44 research outputs found

    Geometric constrains for detecting short actin filaments by cryogenic electron tomography

    Get PDF
    Polymerization of actin into filaments can push membranes forming extensions like filopodia or lamellipodia, which are important during processes such as cell motility and phagocytosis. Similarly, small organelles or pathogens can be moved by actin polymerization. Such actin filaments can be arranged in different patterns and are usually hundreds of nanometers in length as revealed by various electron microscopy approaches. Much shorter actin filaments are involved in the motility of apicomplexan parasites. However, these short filaments have to date not been visualized in intact cells. Here, we investigated Plasmodium sporozoites, the motile forms of the malaria parasite that are transmitted by the mosquito, using cryogenic electron tomography. We detected filopodia-like extensions of the plasma membrane and observed filamentous structures in the supra-alveolar space underneath the plasma membrane. However, these filaments could not be unambiguously assigned as actin filaments. In silico simulations of EM data collection and tomographic reconstruction identify the limits in revealing the filaments due to their length, concentration and orientation

    Cryoelectron tomography reveals periodic material at the inner side of subpellicular microtubules in apicomplexan parasites

    Get PDF
    Microtubules are dynamic cytoskeletal structures important for cell division, polarity, and motility and are therefore major targets for anticancer and antiparasite drugs. In the invasive forms of apicomplexan parasites, which are highly polarized and often motile cells, exceptionally stable subpellicular microtubules determine the shape of the parasite, and serve as tracks for vesicle transport. We used cryoelectron tomography to image cytoplasmic structures in three dimensions within intact, rapidly frozen Plasmodium sporozoites. This approach revealed microtubule walls that are extended at the luminal side by an additional 3 nm compared to microtubules of mammalian cells. Fourier analysis revealed an 8-nm longitudinal periodicity of the luminal constituent, suggesting the presence of a molecule interacting with tubulin dimers. In silico generation and analysis of microtubule models confirmed this unexpected topology. Microtubules from extracted sporozoites and Toxoplasma gondii tachyzoites showed a similar density distribution, suggesting that the putative protein is conserved among Apicomplexa and serves to stabilize microtubules

    Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g

    Get PDF
    Crista junctions (CJs) are important for mitochondrial organization and function, but the molecular basis of their formation and architecture is obscure. We have identified and characterized a mitochondrial membrane protein in yeast, Fcj1 (formation of CJ protein 1), which is specifically enriched in CJs. Cells lacking Fcj1 lack CJs, exhibit concentric stacks of inner membrane in the mitochondrial matrix, and show increased levels of F1FO–ATP synthase (F1FO) supercomplexes. Overexpression of Fcj1 leads to increased CJ formation, branching of cristae, enlargement of CJ diameter, and reduced levels of F1FO supercomplexes. Impairment of F1FO oligomer formation by deletion of its subunits e/g (Su e/g) causes CJ diameter enlargement and reduction of cristae tip numbers and promotes cristae branching. Fcj1 and Su e/g genetically interact. We propose a model in which the antagonism between Fcj1 and Su e/g locally modulates the F1FO oligomeric state, thereby controlling membrane curvature of cristae to generate CJs and cristae tips

    Whole Cell Cryo-Electron Tomography Reveals Distinct Disassembly Intermediates of Vaccinia Virus

    Get PDF
    At each round of infection, viruses fall apart to release their genome for replication, and then reassemble into stable particles within the same host cell. For most viruses, the structural details that underlie these disassembly and assembly reactions are poorly understood. Cryo-electron tomography (cryo-ET), a unique method to investigate large and asymmetric structures at the near molecular resolution, was previously used to study the complex structure of vaccinia virus (VV). Here we study the disassembly of VV by cryo-ET on intact, rapidly frozen, mammalian cells, infected for up to 60 minutes. Binding to the cell surface induced distinct structural rearrangements of the core, such as a shape change, the rearrangement of its surface spikes and de-condensation of the viral DNA. We propose that the cell surface induced changes, in particular the decondensation of the viral genome, are a prerequisite for the subsequent release of the vaccinia DNA into the cytoplasm, which is followed by its cytoplasmic replication. Generally, this is the first study that employs whole cell cryo-ET to address structural details of pathogen-host cell interaction

    Luminal particles within cellular microtubules.

    Get PDF
    The regulation of microtubule dynamics is attributed to microtubule-associated proteins that bind to the microtubule outer surface, but little is known about cellular components that may associate with the internal side of microtubules. We used cryoelectron tomography to investigate in a quantitative manner the three dimensional structure of microtubules in intact mammalian cells. We show that the lumen of microtubules in this native state is filled with discrete, globular particles with a diameter of 7 nm and spacings between 8 and 20 nm in neuronal cells. Cross-sectional views of microtubules confirm the presence of luminal material in vitreous sections of brain tissue. Most of the luminal particles had connections to the microtubule wall, as revealed in tomograms. A higher accumulation of particles was seen near the retracting plus ends of microtubules. The luminal particles were abundant in neurons, but were also observed in other cells, such as astrocytes and stem cells

    Transcellular blood-brain barrier disruption in malaria-induced reversible brain edema.

    Get PDF
    Brain swelling occurs in cerebral malaria (CM) and may either reverse or result in fatal outcome. It is currently unknown how brain swelling in CM reverses, as brain swelling at the acute stage is difficult to study in humans and animal models with reliable induction of reversible edema are not known. In this study, we show that reversible brain swelling in experimental murine CM can be induced reliably after single vaccination with radiation-attenuated sporozoites as proven by in vivo high-field magnetic resonance imaging. Our results provide evidence that brain swelling results from transcellular blood-brain barrier disruption (BBBD), as revealed by electron microscopy. This mechanism enables reversal of brain swelling but does not prevent persistent focal brain damage, evidenced by microhemorrhages, in areas of most severe BBBD. In adult CM patients magnetic resonance imaging demonstrate microhemorrhages in more than one third of patients with reversible edema, emphasizing similarities of the experimental model and human disease. Our data suggest that targeting transcellular BBBD may represent a promising adjunct therapeutic approach to reduce edema and may improve neurological outcome

    Centrosomes and cell division in apicomplexa

    No full text
    Apicomplexans are curious single-celled organisms. Belonging to the group of chromalveolates, life for an apicomplexan can be parasitic and some species can cause diseases such as malaria or toxoplasmosis. No apicomplexan is alike, although they share some common features such as being highly polar cells with unique apical organelles. They often change the cells of their metazoan hosts. When they move, apicomplexans do not crawl but glide; when they divide, apicomplexans go through mechanisms matched in cell biological bizarreness only by their names. They undergo schizogony or endodyogeny, processes that are usually not part of a regular molecular cell biology textbook; but they should, as their uniqueness might lead to insights into what proteins and processes are truly essential to make progeny. Here we highlight some of our current knowledge of centrosome and microtubule biology of selected apicomplexan parasites for the yeast and metazoan cell biologist to contemplate
    corecore